Def Let A be a matrix.

- (1) Its <u>null space</u> Nul(A) is the solution set of the equation $A\overrightarrow{X} = \overrightarrow{0}$.
- (2) Its column space Col(A) is the span of the columns
- (3) Its row space Row(A) is the span of the rows

Prop Let A be an mxn matrix.

- (1) Nul(A) is a subspace of IR^n .
- (2) Col(A) is a subspace of IR^m .
- (3) Row(A) is a subspace of IR^n .

pf (1) • zero vector: \overrightarrow{O} in Nul(A) $(\overrightarrow{AO} = \overrightarrow{O})$

· closed under addition:

$$\overrightarrow{u}$$
 and \overrightarrow{v} in Nul(A) \Longrightarrow A($\overrightarrow{u}+\overrightarrow{v}$)= A $\overrightarrow{u}+A\overrightarrow{v}=\overrightarrow{o}+\overrightarrow{o}=\overrightarrow{o}$
 \Longrightarrow $\overrightarrow{u}+\overrightarrow{v}$ in Nul(A)

· closed under scalar multiplication:

$$\vec{u}$$
 in Nul(A) \Rightarrow A(C \vec{u})= CA \vec{u} = C· \vec{o} = \vec{o} for any CEIR \Rightarrow C \vec{u} in Nul(A) for any CEIR

Hence Nul(A) is a subspace of IR^n

- (2) Col(A) is the <u>span</u> of the columns $\Rightarrow Col(A)$ is a subspace of \mathbb{R}^m
- (3) Row(A) is the <u>span</u> of the rows \Rightarrow Row(A) is a subspace of IR"

 $\underline{\text{Def}}$ Given a matrix A, its $\underline{\text{transpose}}$ A^T is the matrix whose columns are given by the rows of A (in the same order)

e.g.
$$A = \begin{bmatrix} 2 & 0 & 3 & 4 \\ 1 & 2 & 0 & 5 \\ 3 & 1 & 2 & 0 \end{bmatrix} \implies A^{T} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$$

 $\underline{\text{Note}}$ (1) If A is an mxn matrix, A^T is an nxm matrix.

(2)
$$Row(A) = Col(A^T)$$

$$(3) \quad (A^{\mathsf{T}})^{\mathsf{T}} = A$$

* There are many interesting properties of transpose that we will never use in Math 313

e.g.
$$(A+B)^{T} = A^{T} + B^{T}$$
, $(AB)^{T} = B^{T}A^{T}$

Prop Let A be an mxn matrix.

- (1) A vector $\overrightarrow{V} \in \mathbb{R}^m$ lies in $Col(A) \iff A\overrightarrow{X} = \overrightarrow{V}$ has a solution
- (2) A vector $\overrightarrow{w} \in \mathbb{R}^n$ lies in $Row(A) \iff A^T \overrightarrow{y} = \overrightarrow{w}$ has a solution
- \underline{Pf} (1) Let $\overrightarrow{V_1}, \overrightarrow{V_2}, \dots, \overrightarrow{V_n}$ be the columns of A \overrightarrow{V} lies in Col(A)

$$\iff$$
 \overrightarrow{V} lies in the span of $\overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$

$$\iff \overrightarrow{V} = X_1 \overrightarrow{V_1} + X_2 \overrightarrow{V_2} + \dots + X_n \overrightarrow{V_n} \text{ for some } X_{1,1} X_{2,1} \dots, X_n \in \mathbb{R}$$

$$\iff \overrightarrow{V} = \overrightarrow{A} \overrightarrow{X}$$
 has a solution

(2) \overrightarrow{w} lies in $Row(A) = Col(A^T)$

$$\Longrightarrow_{\text{by (1)}} \overrightarrow{w} = \overrightarrow{A}^T \overrightarrow{y}$$
 has a solution

Ex Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix}$$

(1) Determine whether Nul(A) contains
$$\vec{u} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$

$$\underline{Sol}$$
 $A\overrightarrow{u} = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 \Rightarrow Nul(A) contains \vec{u}

(2) Determine whether
$$Col(A)$$
 contains $\overrightarrow{V} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Sol We consider the equation $\overrightarrow{Ax} = \overrightarrow{v}$

$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 3 & 5 & 2 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix} \text{ no leading 1's in the last column}$$

The equation has a solution.

$$\Rightarrow$$
 Col(A) contains \overrightarrow{V}

(3) Determine whether Row(A) contains
$$\vec{w} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

<u>Sol</u> We consider the equation $A^T \overrightarrow{y} = \overrightarrow{w}$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 4 & 5 & 2 \\ A^T & \overrightarrow{W} \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{a \text{ leading 1 in the last column}} a \text{ leading 1 in the last column}$$

The equation has no solutions.

$$\Rightarrow$$
 Row(A) does not contain \overrightarrow{w}

- $\underline{\mathsf{Ex}}$ If possible, express each set either as $\mathsf{Nul}(\mathsf{A})$ or $\mathsf{Col}(\mathsf{A})$ for a suitable matrix A .
 - (1) The set of all vectors of the form $\begin{bmatrix} a-3b \\ 2a+b \end{bmatrix}$ with $a,b \in \mathbb{R}$

Sol We may write
$$\begin{bmatrix} a-3b \\ 2a+b \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

$$\implies$$
 The set is the span of $\overrightarrow{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\overrightarrow{v} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$.

$$\Rightarrow$$
 The set is $\begin{bmatrix} 1 & -3 \\ 2 & 1 \end{bmatrix}$

(2) The set of all points (x,y,z) in \mathbb{R}^3 with x+y=2z and y=2x+3z. Sol The set is given by the solutions of the linear system

$$\begin{cases} x+y-2z=0\\ 2x-y+3z=0 \end{cases}$$

$$\Rightarrow$$
 The set is $Nul \begin{bmatrix} 1 & 1 & -2 \\ 2 & -1 & 3 \end{bmatrix}$

- Note We may visualize the set as the intersection of the planes given by x+y-2z=0 and 2x-y+3z=0
- (3) The set of all points (x,y) in \mathbb{R}^2 with y=x+2
 - Sol The set is not a vector space as it does not contain the zero point (0,0).
 - \Rightarrow The set is not Nul(A) or Col(A) for any matrix A